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Abstract. This paper presents tactics for reasoning about the assertions of sep-
aration logic. We formalise our proof methods in Isabelle/HOL based on Klein
et al.’s separation algebra library. Our methods can also be used in other separa-
tion logic frameworks that are instances of the separation algebra of Calcagno et
al. The first method, separata, is based on an embedding of a labelled sequent
calculus for abstract separation logic (ASL) by Hóu et al. The second method,
starforce, is a refinement of separata with specialised proof search strategies to
deal with separating conjunction and magic wand. We also extend our tactics to
handle pointers in the heap model, giving a third method sepointer. Our tactics can
automatically prove many complex formulae. Finally, we give two case studies on
the application of our tactics.

1 Introduction

Separation Logic (SL) is widely used to reason about programs with pointers and mutable
data structures [34]. Many tools for separation logic have emerged since its inception and
some of them have proven successful in real-life applications, such as the bi-abduction
based techniques used in Infer [1]. Most tools for separation logic are built for small
subsets of the assertion logic, notably the symbolic heap fragment [5], and applied to
verify correctness and memory safety properties of computer programs. However, when
verifying concurrent programs, often there is the need to use a larger fragment of the
assertion language. For instance, the Separation Logic framework in Isabelle/HOL [28]
and the Iris 3.0 framework [26] both use the full set of logical connectives, along with
other features. Currently the frameworks that use larger fragments of the assertion
language tend to focus more on the reasoning of Hoare triples than the assertions. An
exception is the Iris 3.0 framework, in which the authors developed tactics for interactive
proofs. Automated tools, however, are still beyond reach for larger fragments of SL and
are the future work of the Iris project [26].

We are also motivated by our own project, which aims at verifying that an execution
stack, including the processor architecture, micro-kernel, and applications, is correct and
secure. Similar projects are NICTA’s seL4 [30] and Yale’s CertiKOS [19]. In particular,
we are verifying the XtratuM hypervisor which runs on a multi-core LEON3 processor.
Since concurrency is important in our project, it is useful to build formal models using
techniques such as rely/guarantee and separation logic, and we will use the full assertion
language because logical connectives such as the “magic wand” (−∗ ) and “septraction”
(−~) are useful in rely/guarantee reasoning [38]. We aim to build a framework in
Isabelle/HOL that can provide high confidence for the verification tasks. Automatic
tactics in a proof assistant are therefore highly desirable because they can minimise the



overhead of translating back and forth between the proof assistant and external provers,
and it is easier to integrate them with other tactics.

This paper presents automatic proof tactics for reasoning about assertions in separa-
tion logic. Although frame inference is not in our scope, our tactics can be used to reason
about assertions in frame inference. The tactics are independent of the separation logic
framework and the choice of proof assistant, as long as the assertion logic is an instance
of Calcagno et al.’s original definition of separation algebra [11]. For demonstration
purposes and for the sake of our own project, we base our implementation on the work
of Klein et. al. [25], which formalises Calcagno et al.’s separation algebra and uses a
shallow embedding of separation logic assertions into Isabelle/HOL formulae. At the
core of our tactics lies the labelled sequent calculus LS PAS L of Hóu et al. [22], which is
one of the few proof systems that have been shown successful in reasoning about the full
language of assertions of separation logics with various flavours of semantics.

We first formalise each inference rule in LS PAS L as a lemma in a proof assistant, we
then give a basic proof search procedure separata which can easily solve the formulae
in previous BBI and PASL benchmarks [21, 33]. To improve the performance and
automation, we develop several more advanced tactics. The widely-used separating
conjunction (denoted by ∗) behaves like linear conjunction in linear logic. It often creates
difficulty in proof search because one has to find the correct splitting of resources to
complete the proof. Effective ‘resource management’ in linear logic proof search is a
well-known problem and it has been studied in the literature [12, 20]. Unlike the case
with linear logic, where resource is a multiset, we need to deal with a more complex
structure capturing relations between heaps, and it is not clear how search techniques for
linear logic [20] can be employed. We propose a new formula-driven algorithm to solve
the heap partitioning problem. We also present a tactic to simplify the formula when it
involves a combination of ∗ and −∗ connectives. Finally, we extend the above tactics
with inference rules [22] to handle pointers in the heap semantics.

We demonstrate that our tactics are able to prove many separation logic formulae
automatically. These formulae are taken from benchmarks for BBI and abstract separation
logic provers and the sep solve method developed in seL4. We give a case study where
we formalise Feng’s semantics of actions in local rely/guarantee [17] using our extension
of separation algebra, and prove some properties of the semantics using our tactics.
Lastly, we show that our tactics can be easily implemented in other frameworks in case
the user cannot directly use our implementation.

2 Preliminaries

This section gives an overview of Klein et al.’s formalization of Calcagno et al.’s separa-
tion algebra [25]. We extend their work with additional properties which are useful in
applications. Then we briefly revisit the labelled sequent calculus LS PAS L.

2.1 Separation Algebra

A separation algebra [11] is a partial commutative monoid (Σ,+,0) where Σ is a non-
empty set of elements (referred to as “worlds”), + is a binary operator over worlds, and



0 is the unit for +. In Calcagno et al.’s definition, + is a partial function, whereas Klein
et al. defined it as a total function. For generality we shall assume that + at least satisfies
(in the sequel, if not stated otherwise, variables are implicitly universally quantified)
partial-functionality : if x+ y = z and x+ y = w then z = w.
Some formalizations of separation algebra also include a binary relation #, called “sepa-
rateness” [11], over worlds. Two properties are given to the separateness relation: (1)
x # 0; and (2) x # y implies y # x. The first one says every element is separated from the
unit 0, the second one ensures the commutativity of #. As usual, the + operator enjoys
the following properties:
identity : x+0 = x.
commutativity : x # y implies x+ y = y+ x.
associativity : if x # y and y # z and x # z then (x+ y)+ z = x+(y+ z).
Klein et al. then extend the above definitions with two more properties to obtain sep-
aration algebra: (1) if x # (y+ z) and y # z then x # y; (2) if x # (y+ z) and y # z then
(x+ y) # z. Finally, cancellative separation algebra extends the above with
cancellativity : if x+ z = y+ z and x # z and y # z then x = y.

Assertions in separation algebra include the formulae of predicate calculus which
are made from >,⊥, ¬,→,∧,∨, and quantifiers ∃,∀. In addition, there are multiplicative
constant and connectives emp, ∗, and −∗ . In Isabelle/HOL, assertions can be encoded
as predicates of type ′h⇒ bool where ′h is the type of worlds in separation algebra. We
write bAcw for the boolean formula resulting from applying the world w on the assertion
A. The semantics of multiplicative assertions can be defined as:
bempcw iff w = 0.
bP ∗ Qcw iff there exists x,y such that x # y and w = x+ y and bPcx and bQcy.
bP−∗ Qcw iff for all x, if w # x and bPcx then bQc(w+x).

2.2 Further Extension of Separation Algebra

We extend Klein et al.’s library with the following properties that hold in many applica-
tions such as heap model and named permissions, as discussed in [8, 9, 16]:
indivisible unit : if x+ y = 0 and x # y then x = 0.
disjointness : x # x implies x = 0.
cross-split : if a+b = w, c+d = w, a # b and c # d, then there exist e, f ,g,h such that

e+ f = a, g+h = b, e+g = c, f +h = d, e # f , g # h, e # g, and f # h.
We call our extension heap-sep-algebra because our main application is the heap model.
The following tactics also work for the algebra of Calcagno et al. if we remove from the
tactics these extended properties.

2.3 The Labelled Sequent Calculus LS PAS L

The sequent calculus LS PAS L [21] for abstract separation logic is given in Fig. 1, where
we omit the rules for classical connectives. A distinguishing feature of LS PAS L is that it
has “structural rules” which manipulate ternary relational atoms. We define the ternary
relation as: (a,b . c)≡ a # b and a+b = c.

A sequent G ;Γ ` ∆ contains a set G of ternary relational atoms, and sets Γ, ∆
of labelled formulae of the form h : A, which corresponds to bAch in the semantics.



G ;h = 0;Γ ` ∆
empl

G ;Γ;h : emp ` ∆
empr

G ;Γ ` 0 : emp;∆

(h1,h2 .h0);G ;Γ;h1 : A;h2 : B ` ∆
starl

G ;Γ;h0 : A∗B ` ∆
(h1,h0 .h2);G ;Γ;h1 : A ` h2 : B;∆

magicr
G ;Γ ` h0 : A−∗ B;∆

(h1,h2 .h0);G ;Γ ` h1 : A;h0 : A∗B;∆ (h1,h2 .h0);G ;Γ ` h2 : B;h0 : A∗B;∆
starr

(h1,h2 .h0);G ;Γ ` h0 : A∗B;∆

(h1,h0 .h2);G ;Γ;h0 : A−∗ B ` h1 : A;∆ (h1,h0 .h2);G ;Γ;h0 : A−∗ B;h2 : B ` ∆
magicl

(h1,h0 .h2);G ;Γ;h0 : A−∗ B ` ∆

(0,h2 .h2);G ;h1 = h2;Γ ` ∆
eq

(0,h1 .h2);G ;Γ ` ∆
(h2,h1 .h0);(h1,h2 .h0);G ;Γ ` ∆

e
(h1,h2 .h0);G ;Γ ` ∆

(0,h2 .0);h1 = 0;G ;Γ ` ∆
iu

(h1,h2 .0);G ;Γ ` ∆
(h1,h1 .h2);h1 = 0;G ;Γ ` ∆

d
(h1,h1 .h2);G ;Γ ` ∆

(h,0 .h);G ;Γ ` ∆
u

G ;Γ ` ∆

(h3,h5 .h0);(h2,h4 .h5);(h1,h2 .h0);(h3,h4 .h1);G ;Γ ` ∆
a

(h1,h2 .h0);(h3,h4 .h1);G ;Γ ` ∆

(h1,h2 .h0);h0 = h3;G ;Γ ` ∆
p

(h1,h2 .h0);(h1,h2 .h3);G ;Γ ` ∆
(h1,h2.h0);h2 = h3;G ;Γ ` ∆

c
(h1,h2.h0);(h1,h3 .h0);G ;Γ `∆

(h5,h6 .h1);(h7,h8 .h2);(h5,h7 .h3);(h6,h8 .h4);(h1,h2 .h0);(h3,h4 .h0);G ;Γ `∆
cs

(h1,h2 .h0);(h3,h4 .h0);G ;Γ ` ∆

Side conditions:
In starl and magicr, the labels h1 and h2 do not occur in the conclusion.
In a, the label h5 does not occur in the conclusion.
In cs, the labels h5,h6,h7,h8 do not occur in the conclusion.

Fig. 1. The inference rules for multiplicative connectives and structural rules in LS PAS L.

Semicolon on the left hand side of ` means classical conjunction and on the right
means classical disjunction. The sequents on the top of a rule are premises, the one
below is the conclusion. These inference rules are often used backwards in proof search.
That is, to derive the conclusion, we need to derive the premises. The structural rules
eq, u capture identity; e, a are for commutativity and associativity respectively; d for
disjointness, which suffices to derive indivisible unit iu; p, c are for partial-functionality
and cancellativity, and cs for cross-split.

3 Basic Proof Search

LS PAS L rules as lemmas. The first step towards developing automatic tactics in proof
assistants based on the proof system LS PAS L is to translate each inference rule in LS PAS L
to a lemma and prove that it is sound. Suppose a sequent takes the form

R1; . . . ;Rl; s1 : A1; . . . ; sm : Am ` s′1 : B1; . . . ; s′n : Bn
where Ri are ternary relational atoms over labels/worlds, Ai and B j are separation logic
assertions, si and s′j are labels denoting worlds. We translate the sequent to a formula



Type Rules

Invertible
lspasl-empl, lspasl-empr, lspasl-starl, lspasl-magicr
lspasl-eq, lspasl-p, lspasl-c, lspasl-iu, lspasl-d

Quasi-invertible
Logical lspasl-starr, lspasl-magicl
Structural lspasl-u, lspasl-e, lspasl-a, lspasl-cs

Table 1. The types of inferences rules in LS PAS L.

(R1∧·· ·∧Rl∧bA1cs1 ∧·· ·∧bAmcsm)→ (bB1cs′1 ∨·· ·∨bBncs′n).
If a rule has premises P1,P2 and a conclusion C, we translate it to a lemma (P1∧P2)→C.
If a rule has no premises, then we simply need to prove the conclusion. For instance, the
rule starr in Fig. 1 is translated to the following lemma:

Lemma (lspasl-starr). (((h1,h2 .h0)∧Γ→ bAch1 ∨bA∗Bch0 ∨∆) ∧
((h1,h2 .h0)∧Γ→ bBch2 ∨bA∗Bch0 ∨∆))→ ((h1,h2 .h0)∧Γ→ bA∗Bch0 ∨∆)

Note that we combine G and Γ in the rule into Γ in the lemma because in proof assistants
Γ is an arbitrary formula which can be used to represent both. The above lemma is thus
stronger than the soundness of a direct translation of sequents.

For each inference rule r in Fig. 1, we prove a corresponding lemma lspasl-r to
show the soundness of the rule in Calcagno et al.’s separation algebra. In the sequel we
may loosely refer to an inference rule as its corresponding lemma. We have also proved
the inverted versions of the those lemmas which show that all the rules in LS PAS L are
invertible. That is, if the conclusion is derivable, so are the premises. Completeness for
Klein et a.’s formalisation is beyond this work because the semantics that LS PAS L is
complete for, which is also widely used in the literature [9, 16], does not consider the
“separateness” relation, thus LS PAS L itself lacks the treatment of this relation.

Theorem (Soundness). LS PAS L is sound with respect to heap-sep-algebra.

Lemma (Invertibility). The inference rules in LS PAS L are invertible.

Proof search using LS PAS L. Proof assistants such as Isabelle/HOL can automatically
deal with first-order connectives such as >, ⊥, ∧, ∨, ¬,→, ∃ and ∀, so we do not have
to integrate the rule applications for these connectives in proof search. We divide the
other inference rules in two groups: those that are truly invertible, and those that are only
invertible because we “copy” the conclusion to the premises. The intuition is as follows:
“invertible” rules are those that can be applied whenever possible without increasing the
search space unnecessarily. The types of inference rules are summarised in Table 1.

We analyse each rule lspasl-r in Table 1 and prove a lemma lspasl-r-der for a form of
backward derivation. Such lemmas will be directly used in the tactics. Quasi-invertible
rules such as lspasl-starr and lspasl-magicl need to be used with care because they
may generate useless information and add unnecessary subgoals. Continuing with the
example of the rule lspasl-starr, reading it backwards yields the following lemma:

Lemma (lspasl-starr-der). If (h1,h2 .h0) and ¬bA∗Bch0 , then
((h1,h2 .h0)∧¬(bAch1 ∨bA∗Bch0)∧ (starr applied h1 h2 h0 (A∗B))) or
((h1,h2 .h0)∧¬(bBch2 ∨bA∗Bch0)∧ (starr applied h1 h2 h0 (A∗B)))



We include the assumptions in each disjunct so that contraction is admissible. We also
include a dummy predicate “starr applied” on each disjunct to record this rule application.
This predicate is defined as starr applied h1 h2 h0 F ≡ (h1,h2 .h0)∧¬bFch0 .

We use three tactics to reduce search space when lspasl-starr or lspasl-magicl is
applied. The first tactic is commonly used in provers for BBI and abstract separation
logics [21, 33]. For example, we forbid applications of lspasl-starr on the same pair
of labelled formula and ternary relational atom more than once, because repeating
applications on the same pair will not advance the proof search. To realise this, we
generate the predicate “starr applied” in proof search only when the corresponding pair
is used in a rule application. We can then check if this predicate is generated during
proof search, and avoid applying the rule on the same pair again.

The second tactic applies Lemma lspasl-starr-der2, which is an alternative of the
above lemma that applies lspasl-starr on ¬bA∗Bch0 and (h2,h1 .h0):

Lemma (lspasl-starr-der2). If (h1,h2 .h0) and ¬bA∗Bch0 , then
((h1,h2 .h0)∧¬(bAch2 ∨bA∗Bch0)∧ (starr applied h2 h1 h0 (A∗B))) or
((h1,h2 .h0)∧¬(bBch1 ∨bA∗Bch0)∧ (starr applied h2 h1 h0 (A∗B)))

This is a crucial step because without it we will have to wait for the lspasl-e rule
application to generate the commutative variant (h2,h1 . h), and this particular rule
application may be very late in proof search.

The third tactic is a look-ahead in the search: analyse each pair of ¬bA∗Bch0 and
(h1,h2 .h0) in the subgoal, and look for bAch1 and bBch2 in assumptions. If we can find at
least one of them, then we can safely apply Lemma lspasl-starr-der and solve one subgoal
immediately; thus the proof search space is not increased too much. We refer to the
look-ahead tactics as lspasl-starr-der-guided (resp. lspasl-magicl-der-guided). Similar
tactics are also developed for the rule lspasl-magicl. We apply lspasl-starr-der-guided
and lspasl-magicl-der-guided whenever possible.

The structural rule lspasl-u requires more care, because it generates a new ternary
relational atom out of nothing. A natural restriction is to forbid generating an atom if it
already exists in the subgoal. Moreover, we only generate (h,0.h) when (1) h occurs in
some ternary relational atom (in the subgoal), or (2) h occurs in some labelled formula.
We call these two applications lspasl-u-der-tern and lspasl-u-der-form respectively.

We develop two proof methods for the associativity rule lspasl-a. In the first method,
lspasl-a-der, when we find the two assumptions (h1,h2 .h0) and (h3,h4 .h1), we only
apply the rule lspsal-a when none of the following appear in the subgoal:

(0,h2 .h0), (h1,0 .h0), (h1,h2 .0), (0,h4 .h1), (h3,0 .h1),
( ,h3 .h0),(h3, .h0),(h2,h4 . ), (h4,h2 . ).

In the first 5 cases, we can simplify the subgoal by unifying labels. For instance, the first
case implies that h2 = h0, which can be derived by the rule lspasl-eq. The last 4 cases
( means any label/world) indicate that one of the atoms to be generated may already exist
in the subgoal, so we delay this rule application to the second method, lspasl-a-der-full,
in which we generate all possible associative variants of the assumptions.

Real-world applications often involve reasoning of the form “if this assertion holds
for all heaps, then . . . ” [30]. Hóu and Tiu’s recent work included treatments for separation
logic modalities with similar semantics [24]. For example, if the quantifier occurs on the



left hand side of the sequent, they instantiate the quantified world to either an existing
world or a fresh variable. This kind of reasoning often can be handled by existing lemmas
in proof assistants, such as meta-spec in Isabelle/HOL. Therefore we do not detail the
treatment for such quantifiers. We call the tactic for universal quantifiers on worlds
lsfasl-boxl-der since it mimics the �L rule in [24].

We are now ready to present the basic proof search. The first step is to “normalise”
the subgoal from P1=⇒P2=⇒·· ·=⇒Pn=⇒C to P1=⇒P2=⇒·· ·=⇒Pn=⇒¬C=⇒⊥;
otherwise, if C is some A∗B, Lemma lspasl-starr-der will fail to apply on the subgoal.
This preparation stage is called “prep”.

Then we apply the “invertible” rules as much as possible, this is realised by a loop of
applying the following lemmas until none are applicable: lspasl-empl-der, lspasl-starl-
der, lspasl-magicr-der, lspasl-iu-der, lspasl-d-der, lspasl-eq-der, lspasl-p-der, lspasl-c-der,
lspasl-starr-der-guided, lspasl-magicl-der-guided. This stage is called “invert”.

The application of Lemma lsfasl-boxl-der follows, then come “quasi-invertible” rules.
When applying the lemmas for structural rules lspasl-u-der-tern (identity), lspasl-e-der
(commutativity), and lspasl-a-der (associativity), we apply them as much as possible
based on existing ternary relational atoms in the (first) subgoal. We call this loop “non-
inv-struct”. We do not apply quasi-invertible logical rules as much as possible because
that will produce too many subgoals. Thus in the “non-inv-logical” stage we apply one
of lspasl-starr-der, lspasl-starr-der2, lspasl-magicl-der, lspasl-magicl-der2 only once.

Finally, we apply one of three rarely used lemmas in the end: lspasl-u-der-form,
lspasl-cs-der, lspasl-a-der-full. We call this stage “rare”.

The basic proof search procedure, named separata, is an infinite loop of the above
stages until the subgoal is proven or none of the lemmas are applicable. We can express
separata by the following regular expression, where “|” means “or” and “+” means one
or more applications of the preceding element:
separata ≡ (prep | (invert | lsfasl-boxl-der | non-inv-struct | non-inv-logical)+ | rare)+

4 Advanced Tactics for Proof Search

Although separata can handle all logical connectives, it is inefficient when the for-
mula contains a complex structure with ∗ and −∗ . This section extends separata with
specialised tactics for ∗ and −∗ , which pose the main difficulties in reasoning with sepa-
ration logic. The former connective is pervasive in program verification, and the latter
connective is important when reasoning about concurrent programs with rely/guarantee
techniques [38]. We also integrate proof methods for pointers in the heap model.

4.1 Formula-driven tactics for the ∗ Connective

One of the hardest problems in reasoning about resources is to find the correct partition
of resources when applying the (linear) conjunction right rule. In certain fragments of
separation logic such as symbolic heap, this problem is simplified to AC-rewriting and
can be solved relatively easily with existing techniques. However, in a logic with richer
syntax, theorem provers often struggle to find the right partition of resources; this can
be observed from the experiments of theorem provers for BBI and abstract separation



logics [21, 23, 33]. To capture arbitrary interaction between additive connectives (∧,
→) and multiplicative connectives (∗, −∗ ), LS PAS L uses ternary relational atoms as the
underlying data structure, which complicates the reasoning. This subsection proposes
two-stage tactics for such situations, and gives two solutions for the second stage. Our
techniques can also be adopted in other logic systems with ternary relations. Consider
the following example:

Example 1. (h1,h2 .h3) =⇒ (h4,h5 .h1) =⇒ (h6,h7 .h2) =⇒ (h8,h9 .h6) =⇒
(h10,h11 .h8) =⇒ bAch4 =⇒ bBch5 =⇒ bCch10 =⇒ bDch11 =⇒ bEch9 =⇒
bFch7 =⇒ ···=⇒¬b(((B∗E)∗(A∗D))∗C)∗Fch3 =⇒⊥

Recall Lemma lspasl-starr-der in Section 3. To apply it, we need to find an atom (h1,h2 .
h0) which matches the labelled formula ¬bA∗Bch0 . The ternary relation represents a
partition of the resource h0, and only the correct partition will lead to a derivation. In
separata, “non-inv-struct” applies identity, commutativity, and associativity without any
direction. It may generate many atoms that are not needed and increase the search space.
Thus the first problem is how to generate the exact set of ternary relational atoms for
lspasl-starr applications. Let us take a closer look at the subgoal by viewing each ternary
relational atom (h,h′ .h′′) as a binary tree where h′′ is the root and h,h′ are leaf nodes.
We then obtain the binary tree in Fig. 2 (left).

Fig. 2. Graphical representation of Example 1.

The first stage of the tactics is to anal-
yse the structure of the ∗ formula and try
to locate each piece of resource in the
subgoal. In Example 1, it is easy to ob-
serve that A is true at world h4 etc. Com-
bined with the structure of the formula,
we obtain the binary tree in Fig. 2 (right),
which contains a few question marks that
represent the worlds which are currently
unknown. For instance, we do not know
what is the combination of h5 and h9 in
the subgoal; thus we should create a new
ternary relational atom ∃h.(h5,h9 .h) with
a fresh symbol h, and try to find an in-
stance of h later.

In a more general case, we first give an algorithm findworld (Algorithm 1) to find
the world where a formula is true at and store all the new ternary relational atoms we
create. We use “@” for concatenation of lists and “[]” for an empty list. The next step
is to collect all the ternary relational atoms we have created to obtain Fig. 2 (right), as
done in the algorithm starstruct (Algorithm 2).

Now that we know exactly the set of required ternary relational atoms, the second
stage of the tactics is to derive Fig. 2 (right) from (left). We propose two solutions to
the second stage. The first solution works for the separation algebra defined in Dockins
et al.’s work [16], which is more general than the one used in this paper. A common
property shared by Fig. 2 (left) and (right) is that the two binary trees have the same
root and the same multiset of leaf nodes. It is easy to observe that a binary tree naturally



Data: subgoal, and a formula F
Result: a pair of a world and a list of ternary relational atoms
if bFch is in subgoal for some h then

return (h, []);
else if F ≡ A ∧ B or F ≡ A ∨ B or F ≡ A→ B then

(h, l)← findworld(subgoal, A);
if h ≡ NULL then

return findworld(subgoal, B);
else

return (h, l);
else if F ≡ ¬ A or F ≡ ∃x.A or F = ∀x.A then

return findworld(subgoal, A);
else if F ≡ emp then

return (0, []);
else if F ≡ A ∗ B then

(ha, la)← findworld(subgoal, A); (hb, lb)← findworld(subgoal, B);
if (ha,hb .h) occurs in subgoal for some h then

return (h, la@lb);
else

Create a fresh variable h′; return (h′, la@lb@[(ha,hb .h′)]);
else

return (NULL, []);

Algorithm 1: The algorithm findworld.

Data: subgoal, and negated star formula ¬bA∗Bch
Result: a conjunction of ternary relational atoms
(ha, la)← findworld(subgoal, A); (hb, lb)← findworld(subgoal, B);
Make a conjunction of each ternary relational atom in la@lb@[(ha,hb .h)] and

existentially quantify over all the variables created in findworld;

Algorithm 2: The algorithm starstruct.

corresponds to a list of ternary relational atoms. We can use the following lemma to
derive Fig. 2 (right) where we say a node is internal if it is not the root nor a leaf node:

Lemma. Given two binary trees t1 and t2 with the same root and the same multiset of
leaf nodes. Suppose every internal node in t2 is existentially quantified. There exists a
sequence of lspasl-e-der and lspasl-a-der applications to derive t2 from t1.

The intuition is that Fig. 2 (left) and (right) can be seen as parse trees of ∗ connected
terms with different ways of bracketing. The two lemmas lspasl-e-der and lspasl-a-der
correspond respectively to applications of commutativity and associativity of ∗. Those
applications grant us a transformation from one bracketing to the other bracketing.

In the case that certain internal nodes in t2 are not existentially quantified, by the
construction in Algorithm 1 and 2, they must be existing worlds in the subgoal. Suppose
the subgoal contains a binary tree in below (left) and also contains (h2,h4 . h5), and
Algorithm 1 and 2 suggest to derive below (right). We can still use the above lemma to



derive below (middle) from (left), where the question mark is an existentially quantified
variable. We then instantiate the quantified variable to a fresh variable, e.g., h6, and
use lspasl-p-der (partial-functionality of + and .) to unify h6 and h5, then derive below
(right). This solution may be easy to implement in an external theorem prover, but we

faced difficulties when implementing it in Isabelle/HOL. Specifically, whenever we use
Algorithm 1 and 2 to obtain the atoms we need to derive, we have to prove that those
atoms correspond to a binary tree. Since ternary relation is a definition in Isabelle/HOL,
the proof of the tree representation is non-trivial and slow for large instances.

The second solution is inspired by “forward reasoning” and “inverse method” [13].
This solution does not depend on the tree representation, but we shall describe it in terms
of trees for simplicity. Instead of deriving Fig. 2 (right) from (left), we build (right) up
from scratch using the information in (left). This can be seen as forward reasoning on
ternary relational atoms. We start by choosing the bottom-most “sub-tree” (h,h′ . h′′)
in the tree to be derived. If we can prove that h # h′, then there must be a world that
represents the combination of h and h′. If h′′ is not existentially quantified, we can use
partial-functionality to derive that the combination of h and h′ must be h′′. Proving h # h′

is the hard part. The intuition is that if h and h′ are two leaf nodes in a (fragment of the)
tree formed from the subgoal, then they must be “separated”. For instance, from Fig. 2
(left), we should be able to derive h4 # h10 since they are both leaf nodes. We should also
be able to derive h4 # h6 because they are leaf nodes of a fragment of the tree. We need
to prove the following lemmas to reason about “separateness” of worlds:

disj-distri-tern : if w # z and (x,y . z) then w # x.
disj-distri-tern-rev : if x # y and x # z and (y,z .w) then x # w.
disj-comb : if (x,y . z) and x # w and y # w then z # w.
exist-comb : x # y implies ∃z.(x,y . z).

Now we construct Fig. 2 (right) bottom-up using the algorithm provetree (Algo-
rithm 3). The first step is to derive h5 # h9 using lemmas disj-comb, disj-distri-tern,
disj-distri-tern-rev, and lspasl-e-der, and unfolding the definition of the ternary relation.
Next we obtain ∃h.(h5,h9 .h) using Lemma exist-comb. The part in Algorithm 3 where
we show h′′′ = h′′ can be done by applying lemmas lspasl-a-der and lspasl-e-der and
unfolding the definition of the ternary relation. We repeat this process until we have
derived the entire tree in Fig. 2 (right). Now we can use it in lspasl-starr-der applications
to solve Example 1. The whole picture is that we guess the shape of the binary tree,
and guide the application of structural rules by the structure of the ∗ formula. Thus we
achieve a “formula-driven” proof search. We call the above tactics “starr-smart” and we
extend separata by applying starr-smart between “invert” and “lsfasl-boxl-der”.



Data: subgoal, and a tree t representing conjunctions of ternary relational atoms
Result: A proof that subgoal =⇒ t
repeat

Choose a lowest level ternary relational atom (h,h′ .h′′) in t;
Prove h # h′ using lemmas disj-comb, disj-distri-tern and disj-distri-tern-rev;
if h′′ is existentially quantified then

Derive ∃h′′.(h,h′ .h′′) using Lemma exist-comb;
else

Derive ∃h′′′.(h,h′ .h′′′) using Lemma exist-comb; Prove that h′′′ = h′′;
until All ternary relational atoms in t are covered;

Algorithm 3: The algorithm provetree.

4.2 Tactics for Magic Wand

Although −∗ in general is very difficult to handle and it is often deemed as a source of
non-recursive-enumerability in the heap model [6], we observe that many applications of
−∗ in [30] are of the form (A ∗ (B−∗C))→ (A′ ∗ C) where A is a ∗ connected formula
which can be transformed to A′∗B. Consider the following example:

(D ∗ A ∗ ((D ∗ C)−∗ B) ∗ C)→ (A ∗ B)
Instead of deriving the correct way to split the resource according to the formula on the
right hand side, we can use associativity and commutativity of ∗ and transform the left
hand side into A ∗ (D ∗ C) ∗ ((D ∗ C)−∗ B), which suffices to deduce the right hand
side by the following lemma:
Lemma (magic-mp). bC ∗ (C−∗ B)ch implies bBch.

Hence the key in this tactic is to transform a formula into the form A∗C∗(C−∗ B)
then simplify the formula. There are many ways to implement this, for simplicity we
can analyse each ∗ connected formula F ≡ F1∗· · ·∗Fn, and for each Fi ≡ (C−∗ B)
where C ≡ C1∗· · ·∗Cm, we try to match F j, j 6= i with Ck. If each Ck can be suc-
cessfully matched with a (different) F j, we can then obtain a remainder R such that
F ≡ R ∗ C ∗ (C−∗ B). We then apply Lemma magic-mp to remove this occurrence of
−∗ . We integrate this tactic into the sub-procedure “invert”. The extension of separata
with the tactics in Section 4.1 and 4.2 is called starforce.

Compared to separata, starforce applies structural rules and the rules for ∗ and
−∗ using specialised strategies, which often lead to better performance. However, in
rare cases, starforce may be too aggressive and its intermediate tactics may get stuck.
Therefore we leave both options to the user.

4.3 Tactics for the Heap Model

The separation algebra in this paper can be easily extended to capture pointers and
potentially other data structures in the heap model. We shall focus on pointers here. For
generality, we can define a points-to predicate as ′a⇒′ v⇒′ h⇒ bool where ′a and ′v
can be instantiated to address and value respectively in a concrete model, and ′h is the
type of worlds in the separation algebra. We shall write this predicate as b(a 7→ v)ch, the
intended meaning is that address a in heap h has value v. We can then give this relation
some properties à la Hóu et al.’s work [24] to mimic pointers in the heap model:



Injection : if b(a 7→ v)ch1 and b(a 7→ v)ch2 then h1 = h2.
Non-emptiness : ¬b(a 7→ v)c0.
Not-larger-than-one : if b(a 7→ v)ch and (h1,h2 .h) then h1 = 0 or h2 = 0.
Address-disjointness : ¬b(a1 7→ v1)ch1 or ¬b(a1 7→ v2)ch2 or ¬(h1,h2 .h).
Uniqueness : if b(a1 7→ v1)ch and b(a2 7→ v2)ch then a1 = a2 and v1 = v2.
Extensibility : for any h,v, there exist a,h1,h2 such that (h1,h .h2) and b(a 7→ v)ch1 .

It is straightforward to prove corresponding lemmas for these properties and integrate
the application of the lemmas into starforce, resulting in a new method sepointer.

5 Examples

This section demonstrates our implementation of the above tactics in Isabelle/HOL.
Our proof methods separata, starforce, and sepointer can prove formulae automatically
without human interaction. For space reasons we only show some examples. The source
code and an extensive list of tested formulae can be accessed at [2].

Benchmark examples. We show three BBI formulae from the previous benchmarks [21,
33], these formulae are also valid in separation logic. The first one is very hard for
existing BBI theorem provers, but it can be solved easily by separata, which combines
the strength of the Isabelle engine and LS PAS L proof system.

(emp→ (p0−∗ (((p0∗(p0−∗ p1))∗(¬p1))−∗ (p0∗(p0∗((p0−∗ p1)∗(¬p1)))))))→
((((emp∗p0)∗(p0∗((p0−∗ p1)∗(¬p1))))→ (((p0∗p0)∗(p0−∗ p1))∗(¬p1)))∗emp)

Without separata, one could rely on Isabelle’s sledgehammer, which will spend a few
seconds to find a proof. There are also examples that sledgehammer fails to find proofs
in 300s, but separata can solve them instantly:

¬(((A∗(C−∗ (¬((¬(A−∗ B))∗C))))∧ (¬B))∗C)

In general, our Isabelle tactics can prove many complicated formulae which otherwise
may be time consuming to find proofs in Isabelle.

We have tested our tactics on other benchmark formulae for BBI and PASL provers [21,
33], both separata and starforce can prove those formulae automatically.

Example 1 in Section 4 is an instance that separata struggles but starforce can solve
it easily. Similarly, starforce can easily prove the following formula, which is inspired
by an example in seL4, using the tactic in Section 4.2:

(E∗F∗G∗((C∗Q∗R)−∗ B)∗C∗((G∗H)−∗ I)∗H∗((F∗E)−∗ Q)∗A∗R)→ (A∗B∗I)
The tactics for the heap model allow us to demonstrate more concrete examples. For

instance, the following formula from the benchmark in [24] says that if the current heap
can be split into two parts, one is (e1 7→ e2) and the other part does not contain (e3 7→ e4),
and the current heap contains (e3 7→ e4), then we deduce that (e3 7→ e4) and (e1 7→ e2)
must be the same heap, therefore e1 = e3. This kind of reasoning about overlaid data
structures requires applications of cross-split, and it is usually non-trivial to find proofs
manually (Sledgehammer fails to find a proof in 300s).

(((e1 7→ e2) ∗ ¬((e3 7→ e4) ∗ >))∧ ((e3 7→ e4) ∗ >))→ (e1 = e3)

We can also prove some properties about “septraction” in separation logic with rely/guar-
antee where A−~B≡ ¬(A−∗ ¬B), such as the formula below [38]:

((x 7→ y) −~ (z 7→ w))→ ((x = z)∧ (y = w)∧ emp)



Examples in seL4 proofs. Klein et al. implemented separation algebra in Isabelle/HOL
as a part of the renowned seL4 project. Many lemmas in their proofs related to separation
algebra can now be proved with a single application of separata or starforce. The method
sep-solve developed in the seL4 project fails to prove most of the examples we have
tested for our tactics. Compared to the tactics developed in this paper, sep-solve is more
ad-hoc. That is, our tactics are based on a more systematic proof theory (the labelled
sequent calculus), whereas sep-solve focuses on special cases that are useful in practice.
As a result, although sep-solve also have similar tactics to handle −∗ , its treatment is
different because it does not consider ternary relational atoms as its underlying data
structure. Below is a lemma in the development of sep-solve:
lemma (

∧
s.bQcs =⇒ bQ′cs) =⇒ bR−∗ R′cs =⇒ b(Q ∗ R)−∗ (Q′ ∗ R′)cs

(1) apply (erule sep-curry[rotated]) (2) apply (sep-select-asm 1 3)
(3) apply (sep-drule (direct) sep-mp-frame) (4) by (sep-erule-full refl-imp, clarsimp)

This proof can now be simplified to just “by separata”. In cases like above, separata/star-
force can be used as substitutes in the correctness proof of seL4.

6 Case Study

There are two ways to use our tactics: the user can prove that a logic is an instantiation
of separation algebra, and directly apply our proof methods, as demonstrated in the
semantics of actions; or the user can implement our tactics in another framework, as
shown in our extension of the SL framework of Lammich and Meis [28].

Semantics of actions. Our ongoing project involves integrating the semantics of actions in
Feng’s local rely/guarantee [17] in the CSimpl framework [35]. The assertion language of
local rely/guarantee extends separation logic assertions with an additional semantic level
to specify predicates over pairs (σ,σ′) of states, called actions, which are represented by
the states before and after the action. The semantics of actions redefines the separation
logic operations in terms of Cartesian product of states. Additionally, the assertion
language at the state level defines the separation logic operators for a state composed of
three elements (l, s, i) to represent local, shared, and logical variables respectively. We
represent both actions and states as products, and the core of the local rely guarantee’s
assertion language can be defined in CSimpl by showing that the Cartesian product
of two heap-sep-algebras is a heap-sep-algebra. The instantiation of the product as a
heap-sep-algebra involves proving the following properties:
zero-prod-def : 0≡ (0,0).
plus-prod-def : p1 + p2 ≡ (( f st p1)+( f st p2),(snd p1)+(snd p2)).
sep-disj-prod-def : p1 # p2 ≡ (( f st p1) # ( f st p2))∧ ((snd p1) # (snd p2)).

We then prove that the properties in Sections 2.1 and 2.2 hold for pairs of actions.
For an application, we use our tactics to prove the following lemma where
d a e ≡ (λ(σ,σ ′). (σ=σ ′) ∧ (a σ)) and tran-Id ≡ d λs. True e:

lemma assumes a1: bA ∗ tran-Idc(σ1,σ2) and a2: (σ1,σ′ .σ1′)∧ (σ2,σ′ .σ2′)
shows bA ∗ tran-Idc(σ1′,σ2′)
proof - from a2 have ((σ1,σ2),(σ′,σ′) . (σ1′,σ2′)) by (metis( f ull-types) tern-dist1)
then show ?thesis using a1 id-pair-comb apply (simp add : tran-Id-de f satis-de f )



by separata qed
Here dae represents the action with equal initial and end states that satisfies a, so tran id
represents the identity relation. Before we use separata in semantics of actions we have
to provide some domain knowledge that separata does not know, such as the first step
which composes two ternary relational atoms into a ternary relational atom of pairs. We
then need to unfold the definitions in the semantics of actions, and separata can solve the
resultant subgoal quickly.

Lammich and Meis’s SL framework. In case the proof of instantiation of separation
algebra is complex or Isabelle/HOL is not accessible, the user can implement our tactics
in another framework (or even proof assistant). To demonstrate this we port separata
to Lammich and Meis’s SL framework [28] (source code at [2]). This process involves
proving that the inference rules in LS PAS L are sound and adopting the applications of the
rules in the new framework. Developing advanced tactics is feasible but time-consuming.

7 Related Work

Separation algebra was first defined as a cancellative, partial commutative monoid [11],
and later formalized by Klein et al. in Isabelle/HOL [25]. Their definition includes
a “separateness” relation # which is not used in other works such as [8, 9, 16]. We
did, however, find this relation essential in developing tactics for automated reasoning
(cf. Section 4). Later developments by Brotherston et al. [8] and Dockins et al. [16]
added a few more properties in separation algebra, such as single unit, indivisible
unit, disjointness, splittability, cross-split. We extend Klein et al.’s formalisation with
all these properties except splittability because it does not hold in our applications.
The proof theory for logics of separation algebra dates back to the Hilbert system
and sequent calculus for Boolean bunched implications (BBI) [32]. The semantics of
BBI is a generalised separation algebra: a non-deterministic commutative monoid [18].
The undecidability of BBI and other separation algebra induced logics [8, 29] did
not stop the development of semi-decision procedures, including display calculus [7],
nested sequent calculus [33], and labelled sequent calculus [23]. Among these proof
systems, nested sequent calculus and labelled sequent calculus are more suitable for
automated reasoning. Hóu et al. developed labelled sequent calculi for propositional
abstract separation logics [21] and corresponding theorem provers. Brotherson and
Villard gave an axiomatisation for separation algebras using hybrid logic [9]. As far as
we know, except Klein et. al.’s work [25], none of these proof systems nor their proof
search procedures have been formalised in a proof assistant.

Historically, the term “separation logic” refers to both the framework for reasoning
about programs and the assertion logic in the framework. There have been numerous
mechanisations of separation logic frameworks, but most of them focus on the reasoning
of programs (e.g., [36]), whereas this paper focuses on the reasoning of assertions,
so they are not directly comparable to this work. Moreover, most mechanisations of
separation logic framework, e.g., Smallfoot [4], Holfoot [37], Myreen’s rewriting tactics
for SL [31], Ynot [15], Bedrock [14], and Charge! [3], only use a small subset of
the assertion language, typically variants of symbolic heaps. Although some of those



assertion logics are also induced from separation algebra, having a simpler syntax means
that the reasoning task may be easier, and more efficient tactics, such as bi-abduction [10],
can be developed for those logics. Consequently, the reasoning in those assertion logics is
also not comparable to our work, which considers the full first-order assertion language.
The few examples that use the full (or even higher-order) assertion language include
Lammich and Meis’s Isabelle/HOL formalisation of SL [28], Varming and Birkedal’s
formalisation of Higher-order SL (HOSL) [39], and the Iris project [26]. Lammich
and Meis’s SL framework includes a proof method solve entails for assertions. A close
inspection on the source code shows that it is mostly used to prove rather simple formulae
such as (A ∗ emp)→ (A ∗ >) and A ∗ B→ B ∗ A (although it can reason about some
properties of lists). These formulae can be easily proved by our tactics. On the other
hand, none of the examples shown in Section 5 can be proved by solve entails. The
interactive proof mode in Iris 3.0 [27] can solve many formulae in a restricted format,
which is sufficient in their application. However, their tactics are not fully automatic.
The formalisation of HOSL [39] also lacks automated proof methods.

This paper fills the gap of automated tactics for assertions in formalisations of SL. It is
straightforward to adopt our tactics in other Isabelle/HOL formalisations; implementation
in Coq should also be feasible since one can translate our tactics to Gallina and OCaml
embedded code in Coq. Thus our work can be used to greatly improve the automation in
SL mechanisations that involve the full language of assertions.
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21. Zhé Hóu, Ranald Clouston, Rajeev Goré, and Alwen Tiu. Proof search for propositional
abstract separation logics via labelled sequents. In POPL’14, 2014.
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